In September 1997, a general contractor placed a 5-inch-thick concrete floor directly on a vapor retarder. The design water-cement ratio was 0.54, and the contractor's crew added no water at the job site, keeping the slump of the 3500-psi concrete at a nearly constant 4 inches to aid in meeting flatness tolerances for the steel-troweled surface. Because the building wasn't enclosed until December and the fall weather was particularly rainy, the floor was continuously wet for nearly 3 months. After the building was enclosed, it was heated from December through March, and air-conditioning units were turned on in June.

In September 1998, the contractor called us for advice: "Why won't the concrete dry?" he asked. Although placed a year ago, with 9 months after building enclosure in which to dry, the floor was still emitting moisture vapor at a rate of 5½ to 6 pounds/1,000 square feet/24 hours. And the rate hadn't changed much in the past 2 months. Before the floor coating could be applied, however, the emission rate had to reach 3 lbs/1,000 sf/24 hrs.

We were stumped by the contractor's predicament. A reasonable water-cement ratio, no wet granular layer beneath the slab, excellent curing to bind capillary water in the hydrated cement paste, and a long drying period should have produced concrete that would quickly reach the desired moisture-vapor emission rate. But it didn't. Why?

How curing affects drying

Because cement hydration immobilizes some of the mixing water, well-cured concrete contains less free water that must evaporate before floor coverings can be applied. But well-cured concrete also has a disconnected void system that slows the moisture-vapor emission rate. So drying well-cured concrete requires removing a small amount of water, but that water must exit the concrete through a winding, constricted path.

In poorly cured concrete, where the duration of curing is short, the reverse is true. Less cement hydrates, so there's more free water. But the void structure of this concrete is more likely to be interconnected, resulting in larger pores that allow a higher moisture-emission rate.

Which curing condition is best if a contractor needs to install moisture-sensitive flooring as soon as possible? Results from several studies provide an answer to this question.
More curing requires longer drying

Before moisture-sensitive floor coverings can be installed, Swedish specifications require the concrete's internal relative humidity (RH) to reach 85% or 90%, depending on the type of floor covering.

In one study, Hedenblad measured the time required to reach specified internal RH values at a depth equal to 40% of the slab thickness (Ref. 1). Based on that research, he developed a method for estimating drying time using correction factors to account for one- or two-sided drying and for variations in slab thickness, curing conditions, and temperature and RH during drying (Ref. 2).

Table 1 shows calculated one-sided drying times for concretes with water-cement ratios of 0.50 to 0.70 and moist cured for either 1 day or 4 weeks before drying began. Note that concrete with a water-cement ratio of 0.50 and cured for 1 day would reach 85% RH in about 66 days but would take about 92 days to reach the same RH if it had been moist cured for 4 weeks. For 0.70-water-cement-ratio concrete, the extended curing increased the drying time more than 2 months. More work by Hedenblad shows that when mature concrete is rewetted, it takes even longer to dry (see “When Year-Old Concrete Gets Wet”)

These results aren't surprising. In a study of water-vapor conductivity through concrete and mortar, Wierig found that a 1-day wet curing period resulted in vapor conductivity about twice as high as that for a 3-day curing period, and as much as 15 times as high as that for a 365-day curing period (Ref. 3). Hedenblad found a similar trend (see graph on page 29), showing that the ability of concrete to lose moisture declines continuously as the curing period lengthens. Jackson and Kellerman conducted weight-loss tests showing similar effects of moist-curing duration on water loss (Ref. 4). The researchers placed mortar into metal pans to produce 6½ x12-inch specimens 2 inches thick. Some specimens were left uncovered, and others were covered with wet burlap for 1, 2, or 3 days before being allowed to dry from the top surface only in a room at 100° F and 32% RH. Table 2 shows the percentage of original mixing water remaining at ages up to 28 days. At 28 days, specimens that weren't cured had lost 41% of the initial mixing water while the specimens that received a 1- to 3-day burlap cure had lost only 19% or less.

Given the effect of prolonged curing on drying time, what curing duration should specifiers require for...
Meeting schedules vs. achieving quality

ACI 308-92, “Standard Practice for Curing Concrete,” recommends a 7-day minimum curing period for slabs on ground. Hedenblad’s data show that reducing the curing period from 7 days to 3 days doesn’t dramatically change the water-loss rate, but reducing it to 1 day does. Results from one project show that no curing is another option for speeding up drying (see “Is No Cure an Option?”). If the construction schedule requires floor-covering application shortly after concrete placement, reducing the curing period can help the contractor meet that schedule.

However, most designers are reluctant to specify a 1-day cure or no cure because this would reduce surface strength and abrasion resistance and increase shrinkage cracking and curling of the floor. Thus, the age-old tradeoffs between achieving quality and meeting construction schedules must still be addressed.

We know one thing for sure. When floors will receive moisture-sensitive floor coverings, curing periods longer than 7 days are unlikely to produce quality benefits that will offset the adverse effects on the schedule.

<table>
<thead>
<tr>
<th>Type of curing</th>
<th>Duration of curing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hrs 3</td>
</tr>
<tr>
<td>No curing</td>
<td>95</td>
</tr>
<tr>
<td>Burlap cure for 1 day</td>
<td>101</td>
</tr>
<tr>
<td>Burlap cure for 2 days</td>
<td>103</td>
</tr>
<tr>
<td>Burlap cure for 3 days</td>
<td>102</td>
</tr>
</tbody>
</table>

Note: Water remaining in specimens is shown as percent of original mixing water. Specimens were 6½ inches wide, 12 inches long, and 2 inches deep.

References